A Normal Form for All Levi-nondegenerate Almost Cr Structures

نویسندگان

  • DMITRI ZAITSEV
  • D. ZAITSEV
چکیده

We propose a unified normal form for all Levi-nondegenerate hypersurface type almost CR structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Forms for Nonintegrable Almost Cr Structures

We propose two constructions extending the Chern-Moser normal form to non-integrable Levi-nondegenerate (hypersurface type) almost CR structures. One of them translates the ChernMoser normalization into pure intrinsic setting, whereas the other directly extends the (extrinsic) Chern-Moser normal form by allowing non-CR embeddings that are in some sense “maximally CR”. One of the main difference...

متن کامل

New Normal Forms for Levi-nondegenerate Hypersurfaces

In this paper we construct a large class of new normal forms for Levi-nondegenerate real hypersurfaces in complex spaces. We adopt a general approach illustrating why these normal forms are natural and which role is played by the celebrated Chern-Moser normal form [CM74]. The latter appears in our class as the one with the ”maximum normalization” in the lowest degree. However, there are other n...

متن کامل

Embedding of Pseudoconvex Cr Manifolds of Levi-forms with One Degenerate Eigenvalue

Suppose that M is an abstract smoothly bounded orientable CR manifold of dimension 2n − 1 with a given integrable CR structure S of dimension n− 1. Since M is orientable, there are a smooth real nonvanishing 1-form η and a smooth real vector field X0 on M so that η(X) = 0 for all X ∈ S and η(X0) = 1. We define the Levi form of S on M by iη([X ′, X ′′]), X ′, X ′′ ∈ S. We may assume that M ⊂ M̃ ,...

متن کامل

1 F eb 2 00 6 Homogeneous Levi degenerate CR - manifolds in dimension 5

Levi nondegenerate real-analytic hypersurfaces M ⊂ ƒ are well understood due to the seminal results of Tanaka [17] and Chern-Moser[5], where a complete set of local invariants for M has been defined. At the other extreme are those hypersurfaces which are locally CR-equivalent to a product M ׃, (take the real hyperplanes inƒ as a simple example). In-between there is a huge and much less underst...

متن کامل

The Equivalence and the Embedding Problems for Cr-structures of Any Codimension

We give a solution to the equivalence and the embedding problems for smooth CRsubmanifolds of complex spaces (and, more generally, for abstract CR-manifolds) in terms of complete differential systems in jet bundles satisfied by all CR-equivalences or CR-embeddings respectively (local and global). For the equivalence problem, the manifolds are assumed to be of finite type and finitely nondegener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013